
CHAPTER X

SEMANTIC ACTION PARAMETER INFERENCE

THROUGH MACHINE LEARNING METHODS

J. G. VICTORES, S. MORANTE, A. JARDÓN and C. BALAGUER

Robotics Lab, Universidad Carlos III de Madrid; jcgvicto@ing.uc3m.es

This paper presents the initial steps towards a robot imagination system,

which aims at providing robots with the cognitive capability of imagining

how a set of actions can affect a robot's environment, even if the robot has

never seen the specific set of actions applied to its environment before.

This robot imagination system is part of a human-inspired and goal-

oriented infrastructure, which first learns the semantics of actions by hu-

man demonstration, and is then capable of performing the inverse semantic

reconstruction process through mental imagery. A key factor in this system

is distinguishing how different actions affect different features of objects

in the environment. Simple probabilistic and other machine learning meth-

ods, tested to perform this first step of the inference process, are presented

and compared in this paper. The inference of results of composed actions

is generated as the sum of the contributions of each of the query word

components. As an initial prototype, the actual learning process has been

performed using synthetically created minimalistic environments as da-

tasets, and a limited amount of training words for the learning process.

1 Introduction

Every day, humans perform thousands of actions. For robotic systems to

be able help us with our daily life tasks, they must be endowed with recog-

nition capabilities, storage, and reproduction of a great subset of actions to

be performed in corresponding situations. The amount of available actions,

their imprecision in their execution, and a strong dependence on the pref-

erences of different end-users make the hard-coding of parameters an inva-

lid solution of the general case. At most, one would expect to categorize

actions to then evaluate their characteristics. This process of categorization

has already been performed: languages classify different actions, binding

different categories with different words (specifically, verbs). Obtaining

knowledge on the mappings between words and instances from the world

is often referred to as ‘symbol grounding’ (Harnad, 1990), or bridging the

semantic gap.

 In this paper we study the application of different machine learning al-

gorithms to discover the ‘grounding’ of actions: the relation between

words and their corresponding actions, and how these actions can modify

the world. The ‘grounding’ part of this work is closely related to works in

the field of action recognition, also known as direct action recognition

(Poppe, 2010), and has also been targeted in the field of learning by imita-

tion, also known as robot programming by demonstration (Calinon, 2010).

These works are almost completely aimed at learning kinematics of the

actions that humans perform, such as the trajectory of a human arm when

reaching for an object, or the kinematics and dynamics of performing

power grips. However, recent literature from the areas of neuro-science

and psychology tends to indicate that the human brain encodes actions as

end-goals related to the affordances of objects. For instance, when children

imitate others grasping a person's ear, they tend to imitate the action goal

(which ear to grasp) rather than the kinematic aspects of the action (which

hand is used to perform the grasping) (Bekkering, 2000).

An attempt to learn goal-oriented tasks is shown in (Calinon and Guent-

er, 2005) where, despite they aim to learn the trajectory to perform an ac-

tion, they also code some goals to be achieved, even in a distinct way than

learned. A deeper understanding of object uses can be found in (Fitzpat-

rick, 2003), where the effects of pushing/pulling actions on objects to ac-

quire affordances (what actions objects can ‘afford’) are learnt. A great

variety of techniques has been used to try to learn object affordances, such

as Self-Organizing Feature Maps (Cos-Aguilera, 2004), SVM (Dogar,

2007), and Bayesian Networks (Montesano, 2008).

Working in the line of learning about actions in a goal-oriented fashion,

we focus on action recognition by detecting changes in the object in-

volved. This means, for instance, recognizing a rotation action by noticing

the change in the orientation of the object. Additionally, to analyze the ef-

fectiveness of the learning and providing the cognitive capability of robot

imagination, we ask the system how the composition of these actions can

affect the robot's environment, even if the robot has never seen the actions

applied conjunctly to its environment before.

The rest of the paper is organized as follows: Section 2 outlines the pro-

posed custom space, Section 3 explains different algorithms to generate

action parameters, Section 4 compares the algorithm presented, and Sec-

tion 5 discusses about limitations and deficiencies providing several con-

clusions.

2 Semantic Grounding Database

The semantic grounding database is represented and stored as an incre-

mental set of tagged points in an n-dimensional feature space (see Fig. 1),

denoted F. Every time an action is performed, we measure the variation of

the values of the features we extract from the object we are interested in,

and create a new point in F using these variations as coordinates.

Fig. 1. Semantic Grounding Space example where n=2

 This new point is tagged with the name of the action, thus enhancing the

point with a semantic label that will be used for posterior inferences. The

semantic label is a single word. If more than one word is input, overlap-

ping points with the different words as tags (i.e. ‘move rotate’ becomes

‘move’ and ‘rotate’).

For the experiments presented in this paper, we have fixed the dimen-

sions to three (X, Y and ALPHA), which represent the translation and the

rotation of an object in a 2-dimensional space. As semantic input we con-

sider only two words: one for representing a pure translation movement,

‘move’, and another one for representing a pure rotation movement, ‘ro-

tate’. As stated, the grounding process is repeated for each sample, until

the database has been populated with a sufficient amount of samples. We

will start from this populated situation to test our algorithms.

3 Models of Study

The aim of presented algorithms is to obtain coherent and valuable param-

eters for the corresponding semantic input we introduce. The methods pre-

sented cover the most intuitive approximation, starting with a simple

Arithmetic Mean of the samples with the required tag. We also test a Neu-

ral Network system, specifically trained to work in an inverse way to its

conventional use. We construct a Gaussian Mixture Model and extract the

representative parameters. Finally, a Support Vector Machine modified to

work as a regressor is also tested.

3.1 Arithmetic Mean Model

The Arithmetic Mean (AM) model is a relatively naive approach. Upon

receiving a pair <word, [x, y, alpha]>, the Look-Up Table of each element

of the output layer is updated with its corresponding mean. A dependency

graph is depicted in Fig. 2.

Fig 2. Arithmetic Mean Model fully connected dependency graph

An advantage of the AM is that its incremental form for performing online

learning is well-known and simple to implement, as in Equation (1).

(1)

3.2 Neural Network Model

A classical three-layered fully connected Feed-Forward Neural Network

(NN) model has been used for this application, as seen in Fig. 2. Its num-

ber of input perceptrons has been set to 2 (corresponding to the 2 input

words), its number of output perceptrons has been fixed at 3 (correspond-

ing to the 3 used features), and 50 has been the number of perceptrons se-

lected for the hidden layer implementing a sigmoid function. The NN is

trained by back-propagation, a supervised learning method, set at 10

epochs. The number of perceptrons in the hidden layer has been empirical-

ly determined, and offers a tradeback with the number of epochs necessary

to achieve a certain behavior.

Fig. 3. Three-layered fully connected Feed-Forward Neural Network model

It is important to notice that these NN are used in an inverted way when

compared to their habitual use. Instead of classifying a combination of in-

puts into a delimited number of classes, we use the class as the network

input, and the values belonging to the class as the network output. The re-

sulting network we achieve with this method is a kind of ‘pseudo-inverse

NN’, which allows us to interpolate between intermediate values of the

cloud of samples.

3.3 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) represents the probability distribu-

tion (density estimation) of the points. We set the number of mixtures to

one (formally K=1 or M=1), and feed the GMM with all the samples with

the same word. The values used are the Gaussian means.

Fig. 4. Gaussian Mixture Model

Because the use of a single component, the GMM actually corresponds to

a single multivariate Gaussian model. The only component can be summed

out of the general weighted GMM expression of Equation (2).

(2)

This results in a single (unit weight) component expressing the multivari-

ate Gaussian probabilistic density function of Equation (3).

(3)

The actual fitting of the parameters to the data is performed using the Ex-

pectation-Maximization (EM) algorithm, an iterative method for perform-

ing Maximum Likelihood Estimation (Reynolds, 2008).

3.4 Support Vector Regression (SVR)

The Support Vector Regression method (Fig. 5) is a modified version of a

Support Vector Machine (SVM). SVM are normally used in classification

problems, but SVR are adapted to perform regressions.

Fig. 5. Support Vector Regression

We use a non-linear regression version, which uses a kernel function that

transforms the data into a higher dimensional feature space in order to per-

form a linear separation. The kernel function is a Radial Basis Function,

seen in Equation (4).

(4)

This process is called ‘Kernel trick’ and it is used to map samples into oth-

er spaces, hoping that samples will gain linear structure in the new space.

In this new space, SVM uses ‘epsilon intensive loss’ to estimate the quality

of estimation. This function considers the residuals in two ways: if residual

is less than epsilon, then there is no loss, if it is bigger, then, an amount of

loss is added. The main idea of SVR is performing a linear regression in

the higher dimension space, with the epsilon intensive function.

4 Experiments for Comparison of Models

To compare the presented models, we train each with the same experi-

mental dataset. The dataset is composed by 5 ‘move’ sequences, and 5 ‘ro-

tate’ sequences. The sequences are composed by 7 frames (100 by 100

pixel black and white images), such as those seen in Figure 4. The contents

of a ‘move’ sequence is a rectangle that advances 60 pixels on X and Y

while maintaining its rotation. Each ‘rotate’ sequence depicts a 60º angle

rotation while maintaining its position.

Fig. 5. Image sequences: a) move, b) rotate

An additional 1% standard deviation noise has incorporated to each feature

(X, Y and ALPHA) to emulate camera perturbation effects and inefficien-

cies during segmentation. Note that this noise may significantly affect the

behavior of the algorithms, as the training dataset is relatively small. The

programming language used was Python, mostly using the tools provided

by Scikit-Learn (Pedregosa, 2011).

Table 1 and Table 2 depict the outputs of the different tested algorithms

assigned to the ‘rotate’ and ‘move’ word, respectively. For compactness,

the value at the right of the ± operator represents the standard deviation.

Table 1. Table for ROTATE values

Employed techniques X Y Alpha

Arithmetic Mean 0 -0.2 65.62

Neural Network (*) 0.05 ± 0.26 -0.12 ± 0.1 64.83 ± 0.22

Gaussian Mixture Model (**) 0 ± 1.41 -0.2 ± 0.74 65.62 ± 2.81

Support Vector Regressor 0 -0.1 64.55

Table 2. Table for MOVE values

Employed techniques X Y Alpha

Arithmetic Mean 59.8 59.6 -0.26

Neural Network (*) 59.75 ± 0.2 59.56 -0.74 ± 0.43

Gaussian Mixture Model (**) 59.8 ± 0.74 59.6 ± 1.35 -0.26 ± 2.8

Support Vector Regressor 59.9 59.1 0.71

It is important to notice the difference in meaning of the standard deviation

of the NN algorithm and the GMM algorithm. The NN algorithm’s stand-

ard deviation is marked with a (*) because the output of the NN is stochas-

tically variable. This is due to the fact that the network’s weights are set

randomly at initialization. The table values of the NN are the averaged

values of running the algorithm 5 times. The GMM algorithm’s standard

deviation (**), however, describes the dispersion of the input data, a fixed

parameter with an accuracy given by the estimation based on the maximi-

zation of the likelihood of how the distribution expresses the original train-

ing data. It is computed as the square root of the diagonal of the estimated

covariance matrix.

The final Root-Mean-Square (RMS) errors on composition are illustrat-

ed in Table 3. They have been computed as the direct sum of the values

found on Table 1 and Table 2, setting the target values to X=60, Y=60 and

ALPHA=60º (which is the intuitive composition of ‘rotate’ and ‘move’ a

human could deduce from the input). This table represents a final metric

on the accuracy of the algorithm, while obviating other metrics or ad-

vantages which will be considered in the following final section.

Table 3. Table for MOVE and ROTATE composition errors (RMS)

Employed techniques RMS

Arithmetic Mean 5.403

Neural Network 4.97 ± 0.45

Gaussian Mixture Model 5.403

Support Vector Regressor 5.367

5 Conclusions

The bases for future research on robot imagination systems of actions and

action compositions using algorithms from the field of machine learning

have been set. The following points review some of the benefits and draw-

backs of the studied algorithms on this specific minimalistic dataset:

 The Arithmetic Mean offers a fast and accurate solution. Addition-

ally, the possibility of easily implementing its incrementally learn-

ing version will surely be attractive to many readers. However, it

lacks a certain degree of flexibility and deep philosophical inter-

pretations that may be found abundance within other algorithms.

 Our Neural Network implementation has proved to work well,

even having being trained inversely. It is the most and perhaps on-

ly bio-inspired algorithm of the ones tested. This is also manifest

in the fact that its results are not always the same, much like in a

human’s actions. Moreover, it offers a quite unique possibility of

simultaneously activating several inputs. These results were, how-

ever, omitted in the experiment section due to bogus results: out-

put more similar to the mean than to the sum of actions.

 We consider the Gaussian Mixture Model the most attractive op-

tion. The results are precise as with the Arithmetic Mean, but may

be distributed with a standard deviation similar to that of the input

values if desired. This can be important if, for example, the algo-

rithm determines a great degree of dispersion is a representative

characteristic of a certain action. Additionally, several algorithms

which have not been used here can be used to perfect the model.

For example, Bayesian Information Criterion (BIC) or Akaike In-

formation Criterion (AIC) may be used to determine an optimal

number of Gaussian components other than K=1. Furthermore, re-

cent studies indicate Bayes-Optimal estimators may achieve higher

performance than methods based on maximization of likelihood.

 The Support Vector Regressor algorithm has been proved to be a

valid method in terms of computation cycles and accuracy. How-

ever, the authors consider that further study is required in order to

unveil its full potential.

Moreover, the authors would like to transmit a final question to the robotic

scientific community: “How are robots going to transform the world if

they can't even imagine how?”

Acknowledgements

The research leading to these results has received funding from the AR-

CADIA project DPI2010-21047-C02-01 funded by CICYT project grant

on behalf of Spanish Ministry of Economy and Competitiveness.

References

Bekkering, H., Wohlschlager, A., and Gattis, M. 2000. Imitation of ges-

tures in children is goal-directed. The Quarterly Journal of Experimental

Psychology: Section A, 53(1), 153–164.

Calinon, S., D’halluin, F., Sauser, E., Caldwell, D. and Billard, A. 2010.

Learning and reproduction of gestures by imitation. IEEE Robotics and

Automation Magazine, vol. 17, no. June, pp. 44–54.

Calinon, S., Guenter, F., and Billard, A. 2005. “Goal-directed imitation in

a humanoid robot. In Robotics and Automation”. ICRA 2005. Proceedings

of the 2005 IEEE International Conference on (pp. 299–304). IEEE.

Cos-Aguilera, I., Hayes, G., and Cañamero, L. (2004). Using a SOFM to

learn object affordances. In Procs 5th Workshop of Physical Agents

(WAF'04). University of Edinburgh.

Dogar, M. R., Cakmak, M., Ugur, E., and Sahin, E. (2007, October). From

primitive behaviors to goal-directed behavior using affordances. In Intelli-

gent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Con-

ference on (pp. 729–734). IEEE.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., and Sandini, G. 2003. Learn-

ing about objects through action-initial steps towards artificial cognition.

In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE Interna-

tional Conference on (Vol. 3, pp. 3140–3145). IEEE.

Harnad. S. 1990. The symbol grounding problem. Physica D: Nonlinear

Phenomena, 42(1):335–346.

Montesano, L., Lopes, M., Bernardino, A., and Santos-Victor, J. (2008).

Learning Object Affordances: From Sensory-Motor Coordination to Imita-

tion. Robotics, IEEE Transactions on, 24(1), 15–26.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in

Python. The Journal of Machine Learning Research, 12, 2825-2830.

Poppe, R. 2010. A survey on vision-based human action recognition. Im-

age and vision computing, 28(6), 976–990.

Reynolds, D. (2008). Gaussian mixture models. Encyclopedia of Biometric

Recognition, 2(17.36), 14-68.

